, задаёт окружность радиуса r
Что бы задать лучи, используем несколько функций вида ![y = kx + a y = kx + a](https://tex.z-dn.net/?f=y+%3D+kx+%2B+a)
При a = 0, все прямые, задаваемые уравнениями вида
, будут проходить через точку пересечения координатных осей.
Возьмём 5 прямых, которые будут иметь угол с осью Ох, соответственно, в 0, 30, 60,120, 150 градусов. Этим углам соотвествуют следующие значения углового коэффициента k:
Под углом 90 градусов будет падать прямая x = 0.
![y = 0, y = \frac{1}{\sqrt{3}}x, y = \sqrt{3}x, y = \sqrt{3}x, y = \frac{1}{\sqrt{3}}x, x = 0. y = 0, y = \frac{1}{\sqrt{3}}x, y = \sqrt{3}x, y = \sqrt{3}x, y = \frac{1}{\sqrt{3}}x, x = 0.](https://tex.z-dn.net/?f=y+%3D+0%2C+y+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+y+%3D+%5Csqrt%7B3%7Dx%2C+y+%3D+%5Csqrt%7B3%7Dx%2C+y+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+x+%3D+0.)
Осталось вырезать у этих прямых отрезки, которые лежат внутри окружности. Для этого найдём точки пересечения этих прямых и окружности.
![1) y = 0, x^2 = r^2, x = r, x = -r.\\ 2) y = \frac{1}{\sqrt{3}}x, 4x^2=3r^2, x = \frac{\sqrt{3}r}{2}, x = -\frac{\sqrt{3}r}{2}\\ 3) y = \sqrt{3}x, 4x^2=r^2, x = \frac{r}{2}, x = -\frac{r}{2}\\ 4) y = -\sqrt{3}x, 4x^2=r^2, x = \frac{r}{2}, x = -\frac{r}{2}\\ 5) y = -\frac{1}{\sqrt{3}}x, 4x^2=3r^2, x = \frac{\sqrt{3}r}{2}, x = -\frac{\sqrt{3}r}{2}\\ 6) x = 0, y^2 = r^2, y = r, y = -r. 1) y = 0, x^2 = r^2, x = r, x = -r.\\ 2) y = \frac{1}{\sqrt{3}}x, 4x^2=3r^2, x = \frac{\sqrt{3}r}{2}, x = -\frac{\sqrt{3}r}{2}\\ 3) y = \sqrt{3}x, 4x^2=r^2, x = \frac{r}{2}, x = -\frac{r}{2}\\ 4) y = -\sqrt{3}x, 4x^2=r^2, x = \frac{r}{2}, x = -\frac{r}{2}\\ 5) y = -\frac{1}{\sqrt{3}}x, 4x^2=3r^2, x = \frac{\sqrt{3}r}{2}, x = -\frac{\sqrt{3}r}{2}\\ 6) x = 0, y^2 = r^2, y = r, y = -r.](https://tex.z-dn.net/?f=1%29+y+%3D+0%2C+x%5E2+%3D+r%5E2%2C+x+%3D+r%2C+x+%3D+-r.%5C%5C+2%29+y+%3D+%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+4x%5E2%3D3r%5E2%2C+x+%3D+%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%2C+x+%3D+-%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%5C%5C+3%29+y+%3D+%5Csqrt%7B3%7Dx%2C+4x%5E2%3Dr%5E2%2C+x+%3D+%5Cfrac%7Br%7D%7B2%7D%2C+x+%3D+-%5Cfrac%7Br%7D%7B2%7D%5C%5C+4%29+y+%3D+-%5Csqrt%7B3%7Dx%2C+4x%5E2%3Dr%5E2%2C+x+%3D+%5Cfrac%7Br%7D%7B2%7D%2C+x+%3D+-%5Cfrac%7Br%7D%7B2%7D%5C%5C+5%29+y+%3D+-%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+4x%5E2%3D3r%5E2%2C+x+%3D+%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%2C+x+%3D+-%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%5C%5C+6%29+x+%3D+0%2C+y%5E2+%3D+r%5E2%2C+y+%3D+r%2C+y+%3D+-r.+)
Тогда:
![(x^2+y^2 = r^2) \cup (y=0, x \in (-\infty, -r]\cup[r, +\infty)) \cup\\ (y=\frac{1}{\sqrt{3}}x, x \in (-\infty, -\frac{\sqrt{3}r}{2}]\cup[\frac{\sqrt{3}r}{2}, +\infty))\cup\\(y=\sqrt{3}x, x \in (-\infty, -\frac{r}{2}]\cup[\frac{r}{2}, +\infty))\cup\\(y=-\sqrt{3}x, x \in (-\infty, -\frac{r}{2}]\cup[\frac{r}{2}, +\infty)\cup\\(y=-\frac{1}{\sqrt{3}}x, x \in (-\infty, -\frac{\sqrt{3}r}{2}]\cup[\frac{\sqrt{3}r}{2}, +\infty))\cup\\(x=0, y \in (-\infty, -r]\cup[r, +\infty)) (x^2+y^2 = r^2) \cup (y=0, x \in (-\infty, -r]\cup[r, +\infty)) \cup\\ (y=\frac{1}{\sqrt{3}}x, x \in (-\infty, -\frac{\sqrt{3}r}{2}]\cup[\frac{\sqrt{3}r}{2}, +\infty))\cup\\(y=\sqrt{3}x, x \in (-\infty, -\frac{r}{2}]\cup[\frac{r}{2}, +\infty))\cup\\(y=-\sqrt{3}x, x \in (-\infty, -\frac{r}{2}]\cup[\frac{r}{2}, +\infty)\cup\\(y=-\frac{1}{\sqrt{3}}x, x \in (-\infty, -\frac{\sqrt{3}r}{2}]\cup[\frac{\sqrt{3}r}{2}, +\infty))\cup\\(x=0, y \in (-\infty, -r]\cup[r, +\infty))](https://tex.z-dn.net/?f=%28x%5E2%2By%5E2+%3D+r%5E2%29+%5Ccup+%28y%3D0%2C+x+%5Cin+%28-%5Cinfty%2C+-r%5D%5Ccup%5Br%2C+%2B%5Cinfty%29%29+%5Ccup%5C%5C+%28y%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+x+%5Cin+%28-%5Cinfty%2C+-%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%5D%5Ccup%5B%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%2C+%2B%5Cinfty%29%29%5Ccup%5C%5C%28y%3D%5Csqrt%7B3%7Dx%2C+x+%5Cin+%28-%5Cinfty%2C+-%5Cfrac%7Br%7D%7B2%7D%5D%5Ccup%5B%5Cfrac%7Br%7D%7B2%7D%2C+%2B%5Cinfty%29%29%5Ccup%5C%5C%28y%3D-%5Csqrt%7B3%7Dx%2C+x+%5Cin+%28-%5Cinfty%2C+-%5Cfrac%7Br%7D%7B2%7D%5D%5Ccup%5B%5Cfrac%7Br%7D%7B2%7D%2C+%2B%5Cinfty%29%5Ccup%5C%5C%28y%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7Dx%2C+x+%5Cin+%28-%5Cinfty%2C+-%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%5D%5Ccup%5B%5Cfrac%7B%5Csqrt%7B3%7Dr%7D%7B2%7D%2C+%2B%5Cinfty%29%29%5Ccup%5C%5C%28x%3D0%2C+y+%5Cin+%28-%5Cinfty%2C+-r%5D%5Ccup%5Br%2C+%2B%5Cinfty%29%29)