Высота конуса равна 12 а длинв образующей 37 найлите площадь осевого сечения

0 голосов
68 просмотров

Высота конуса равна 12 а длинв образующей 37 найлите площадь осевого сечения


Математика (57 баллов) | 68 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Осевое сечение конуса является равнобедренным треугольником, высота которого равна высоте конуса, а боковая сторона - образующей конуса. Найдем по теореме Пифагора  радиус, который равен половине основания. 
R =√(37² - 12²) = √((37+12)*(37-12)) =7*5 = 35.
 S = 1/2 * (70) *12 = 420. 70 - это основание треугольника.

(151k баллов)