1) AB =c=7 , BC=a=3√3 , sin∠A= (3√3)/14.
---
∠C -?
По теореме синусов : c/sin∠C=a/sin∠A || AB/sin∠C=BC/sin∠A|| ;
7/sin∠C =3√3/(3√3)/14))⇒7/sin∠C =14 ⇒∠C =30° или ∠C =150°.
∠A < 30° (не может быть >150°) т.к. (3√3)/14 <1/2 .<br>-------
2) OA=OB =OC , ∠AOC =100° .
---
∠B -?
По условию задачи OA=OB =OC⇒ точка O является центром описанной окружности и ∠AOC центральный угол. Градусная мера малой дуги
AC равно 100°. ∠B =(1/2)*(дугаAC) =50° (как вписанный угол).
-------
3) ∠A = ∠B =90° , BC||AD , BC=5 ,AD =12 , AB =7.
---
∠BCD -?
Проведем CH⊥AD , H∈[AD] ⇒ HC=AB =7 , HD =AD - AH =AD - BC =7.
Получилось CH=HD в прямоугольном треугольнике CHD ⇒∠D =45° , поэтому
∠BCD =180° - ∠D =180° -45 ° =135°.