Даю много баллов!!!!! Касательные к окружности в точках В и С пересекаются в точке А....

0 голосов
60 просмотров

Даю много баллов!!!!!
Касательные к окружности в точках В и С пересекаются в точке А. Докажите, что центр окружности, вписанной в треугольник АВС, совпадает с серединой дуги ВС, расположенной внутри треугольника.


Геометрия (240 баллов) | 60 просмотров
0

Смотрите решение здесь http://znanija.com/task/16275064

Дан 1 ответ
0 голосов
Правильный ответ
Отрезки касательных из точки вне окружности до точки касания  с ней равны. 
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. 
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.  
 Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. 
ВК и СМ - биссектрисы равных углов В и С соответственно.
 Угол АВК равен половине угла АВС, и, следовательно, равен  четверти дуги, заключенной между  сторонами   угла АВС, поэтому ВК пересекает дугу ВС в ее середине. 
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и  потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать. 

image
(228k баллов)