Объясните, какие углы называются соответственными. Докажите что, если внутренние накрест...

0 голосов
64 просмотров

Объясните, какие углы называются соответственными. Докажите что, если внутренние накрест лежащие углы равны, то соответственные углы тоже равны, и наоборот.


Геометрия (15 баллов) | 64 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
(44 баллов)