Основанием пирамиды служит равнобедренная трапеция, основания которой равны 2 и 4....

0 голосов
136 просмотров

Основанием пирамиды служит равнобедренная трапеция, основания которой равны 2 и 4. Боковые грани пирамиды одинаково наклонены к плоскости основания. Высота боковой грани равна 5. Найдите площадь полной поверхности пирамиды.


a. 30+6√3
b. 30+6√2
c. 30 - 6√3
d. 30 - 6√2


Геометрия (734 баллов) | 136 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности.
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=\frac{ \sqrt{ab} }{2}, высота трапеции: h=2r=\sqrt{ab}=√8=2√2
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
Ответ: a. 30+6\sqrt{2}

(34.9k баллов)