![(\frac{x}{x-1})^{2}+(\frac{x}{x+1})^{2}=\frac{10}{9} (\frac{x}{x-1})^{2}+(\frac{x}{x+1})^{2}=\frac{10}{9}](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx%7D%7Bx-1%7D%29%5E%7B2%7D%2B%28%5Cfrac%7Bx%7D%7Bx%2B1%7D%29%5E%7B2%7D%3D%5Cfrac%7B10%7D%7B9%7D)
![\frac{x^{2}}{(x-1)^{2}}+\frac{x^{2}}{(x+1)^{2}}=\frac{10}{9} \frac{x^{2}}{(x-1)^{2}}+\frac{x^{2}}{(x+1)^{2}}=\frac{10}{9}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%7D%7B%28x-1%29%5E%7B2%7D%7D%2B%5Cfrac%7Bx%5E%7B2%7D%7D%7B%28x%2B1%29%5E%7B2%7D%7D%3D%5Cfrac%7B10%7D%7B9%7D)
Отметим ОДЗ.
![\left \{ {{(x-1)^{2}\neq0} \atop {(x+1)^{2}\neq0}} \right \left \{ {{(x-1)^{2}\neq0} \atop {(x+1)^{2}\neq0}} \right](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B%28x-1%29%5E%7B2%7D%5Cneq0%7D+%5Catop+%7B%28x%2B1%29%5E%7B2%7D%5Cneq0%7D%7D+%5Cright)
![\left \{ {{x\neq1} \atop {x\neq-1}} \right \left \{ {{x\neq1} \atop {x\neq-1}} \right](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7Bx%5Cneq1%7D+%5Catop+%7Bx%5Cneq-1%7D%7D+%5Cright)
/·![9(x^{2}-2x+1)(x^{2}+2x+1) 9(x^{2}-2x+1)(x^{2}+2x+1)](https://tex.z-dn.net/?f=9%28x%5E%7B2%7D-2x%2B1%29%28x%5E%7B2%7D%2B2x%2B1%29)
![9x^{2}(x^{2}+2x+1)+9x^{2}(x^{2}-2x+1)=10(x^{2}+2x+1)(x^{2}-2x+1) 9x^{2}(x^{2}+2x+1)+9x^{2}(x^{2}-2x+1)=10(x^{2}+2x+1)(x^{2}-2x+1)](https://tex.z-dn.net/?f=9x%5E%7B2%7D%28x%5E%7B2%7D%2B2x%2B1%29%2B9x%5E%7B2%7D%28x%5E%7B2%7D-2x%2B1%29%3D10%28x%5E%7B2%7D%2B2x%2B1%29%28x%5E%7B2%7D-2x%2B1%29)
![9x^{4}+18x^{3}+9x^{2}+9x^{4}-18x^{3}+9x^{2}=10(x^{4}-2x^{3}+x^{2}+2x^{3}-4x^{2}+2x+x^{2}-2x+1) 9x^{4}+18x^{3}+9x^{2}+9x^{4}-18x^{3}+9x^{2}=10(x^{4}-2x^{3}+x^{2}+2x^{3}-4x^{2}+2x+x^{2}-2x+1)](https://tex.z-dn.net/?f=9x%5E%7B4%7D%2B18x%5E%7B3%7D%2B9x%5E%7B2%7D%2B9x%5E%7B4%7D-18x%5E%7B3%7D%2B9x%5E%7B2%7D%3D10%28x%5E%7B4%7D-2x%5E%7B3%7D%2Bx%5E%7B2%7D%2B2x%5E%7B3%7D-4x%5E%7B2%7D%2B2x%2Bx%5E%7B2%7D-2x%2B1%29)
группируем
![(9x^{4}+9x^{4})+(18x^{3}-18x^{3})+(9x^{2}+9x^{2})=10(x^{4}+(-2x^{3}+2x^{3})+(x^{2}-4x^{2}+x^{2})+(2x-2x)+1) (9x^{4}+9x^{4})+(18x^{3}-18x^{3})+(9x^{2}+9x^{2})=10(x^{4}+(-2x^{3}+2x^{3})+(x^{2}-4x^{2}+x^{2})+(2x-2x)+1)](https://tex.z-dn.net/?f=%289x%5E%7B4%7D%2B9x%5E%7B4%7D%29%2B%2818x%5E%7B3%7D-18x%5E%7B3%7D%29%2B%289x%5E%7B2%7D%2B9x%5E%7B2%7D%29%3D10%28x%5E%7B4%7D%2B%28-2x%5E%7B3%7D%2B2x%5E%7B3%7D%29%2B%28x%5E%7B2%7D-4x%5E%7B2%7D%2Bx%5E%7B2%7D%29%2B%282x-2x%29%2B1%29)
![18x^{4}+18x^{2}=10(x^{4}-2x^{2}+1) 18x^{4}+18x^{2}=10(x^{4}-2x^{2}+1)](https://tex.z-dn.net/?f=18x%5E%7B4%7D%2B18x%5E%7B2%7D%3D10%28x%5E%7B4%7D-2x%5E%7B2%7D%2B1%29)
![18x^{4}+18x^{2}=10x^{4}-20x^{2}+10 18x^{4}+18x^{2}=10x^{4}-20x^{2}+10](https://tex.z-dn.net/?f=18x%5E%7B4%7D%2B18x%5E%7B2%7D%3D10x%5E%7B4%7D-20x%5E%7B2%7D%2B10)
перенесём всё в левую часть и приравняем уравнение к нулю, при этом не забываем сменить знаки на противоположные
![18x^{4}+18x^{2}-10x^{4}+20x^{2}-10=0 18x^{4}+18x^{2}-10x^{4}+20x^{2}-10=0](https://tex.z-dn.net/?f=18x%5E%7B4%7D%2B18x%5E%7B2%7D-10x%5E%7B4%7D%2B20x%5E%7B2%7D-10%3D0)
группируем
![(18x^{4}-10x^{4})+(18x^{2}+20x^{2})-10=0 (18x^{4}-10x^{4})+(18x^{2}+20x^{2})-10=0](https://tex.z-dn.net/?f=%2818x%5E%7B4%7D-10x%5E%7B4%7D%29%2B%2818x%5E%7B2%7D%2B20x%5E%7B2%7D%29-10%3D0)
![8x^{4}+38x^{2}-10=0 8x^{4}+38x^{2}-10=0](https://tex.z-dn.net/?f=8x%5E%7B4%7D%2B38x%5E%7B2%7D-10%3D0)
Произведём замену переменных.
Пусть ![y=x^{2} y=x^{2}](https://tex.z-dn.net/?f=y%3Dx%5E%7B2%7D)
В результате замены переменных получаем вспомогательное уравнение.
![8y^{2}+38y-10=0 8y^{2}+38y-10=0](https://tex.z-dn.net/?f=8y%5E%7B2%7D%2B38y-10%3D0)
Cчитаем дискриминант:
![D=38^{2}-4\cdot8\cdot(-10)=1444+320=1764 D=38^{2}-4\cdot8\cdot(-10)=1444+320=1764](https://tex.z-dn.net/?f=D%3D38%5E%7B2%7D-4%5Ccdot8%5Ccdot%28-10%29%3D1444%2B320%3D1764)
Дискриминант положительный
![\sqrt{D}=42 \sqrt{D}=42](https://tex.z-dn.net/?f=%5Csqrt%7BD%7D%3D42)
Уравнение имеет два различных корня:
![y_{1}=\frac{-38+42}{2\cdot8}=\frac{4}{16}=\frac{1}{4}=0,25 y_{1}=\frac{-38+42}{2\cdot8}=\frac{4}{16}=\frac{1}{4}=0,25](https://tex.z-dn.net/?f=y_%7B1%7D%3D%5Cfrac%7B-38%2B42%7D%7B2%5Ccdot8%7D%3D%5Cfrac%7B4%7D%7B16%7D%3D%5Cfrac%7B1%7D%7B4%7D%3D0%2C25)
![y_{2}=\frac{-38-42}{2\cdot8}=\frac{-80}{16}=-5 y_{2}=\frac{-38-42}{2\cdot8}=\frac{-80}{16}=-5](https://tex.z-dn.net/?f=y_%7B2%7D%3D%5Cfrac%7B-38-42%7D%7B2%5Ccdot8%7D%3D%5Cfrac%7B-80%7D%7B16%7D%3D-5)
Теперь решение исходного уравнения разбивается на отдельные случаи.
Случай 1
![x^{2}=0,25 x^{2}=0,25](https://tex.z-dn.net/?f=x%5E%7B2%7D%3D0%2C25)
![x_{1}=\sqrt{0,25}=0,5 x_{1}=\sqrt{0,25}=0,5](https://tex.z-dn.net/?f=x_%7B1%7D%3D%5Csqrt%7B0%2C25%7D%3D0%2C5)
![x_{2}=-\sqrt{0,25}=-0,5 x_{2}=-\sqrt{0,25}=-0,5](https://tex.z-dn.net/?f=x_%7B2%7D%3D-%5Csqrt%7B0%2C25%7D%3D-0%2C5)
Случай 2
![x^{2}=-5 x^{2}=-5](https://tex.z-dn.net/?f=x%5E%7B2%7D%3D-5)
нет корней
Произведём проверку ОДЗ.
![\left \{ {{0,5\neq1} \atop {0,5\neq-1}} \right \left \{ {{0,5\neq1} \atop {0,5\neq-1}} \right](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B0%2C5%5Cneq1%7D+%5Catop+%7B0%2C5%5Cneq-1%7D%7D+%5Cright)
удовлетворяет ОДЗ
![\left \{ {{-0,5\neq1} \atop {-0,5\neq-1}} \right \left \{ {{-0,5\neq1} \atop {-0,5\neq-1}} \right](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B-0%2C5%5Cneq1%7D+%5Catop+%7B-0%2C5%5Cneq-1%7D%7D+%5Cright)
удовлетворяет ОДЗ
Ответ:
; ![x_{2}=-0,5 x_{2}=-0,5](https://tex.z-dn.net/?f=x_%7B2%7D%3D-0%2C5)