1) Наклонная 13 см, высота 5 см и проекция образуют прямоугольный треугольник.
Проекция равна корень(13^2-5^2)= корень(144)=12.
Получили на плоскости равнобедренный треугольник, у которого боковые 12 см, и угол между ними 60 градусов. То есть он равносторонний.
Расстояние между концами наклонных равно 12 см.
2) Никакой ошибки в задании нет.
а) BD перпендикулярен к плоскости, значит, проекция BD на плоскость - это точка В.
Проекция треугольника DBC - это отрезок BC длиной 10 см.
б) Проведем в ABC высоту BH, она же медиана и биссектриса, потому что ABC равнобедренный.
Треугольник ABH прямоугольный, гипотенуза АВ = 12, катет АН = 5. Катет высота ВН = корень(12^2-5^2) = корень(119)
Нам надо найти DH. Треугольник BDH тоже прямоугольный, DH - гипотенуза.
DH = корень(119+15^2) = корень(344).
Если бы АС = 13, то все было бы