1) Треугольники ВОС и АОД подобны по двум углам
∠СВД=∠ВДА - внутренние накрест лежащие при палаллельных прямых ВС и АД и секущей ВД
∠ВОС=АОД - как вертикальные.
Из подобия треугольников следует пропорциональность сторон
ВО:ОД=ВС:АД
Пусть ВО=х, тогда ВС=(х+2)
х:(х+2)=6:14
14х=6х+12
8х=12
х=1,5
ВД=ВО+ОД=х+(х+2)=2х+2=2·1,5+2=3+2=5 см
2) По свойству биссектрисы: биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам
АВ:АС=ВК:КС=4:7
АВ=4х
АС=7х
АС-АВ=9
7х-4х=9
3х=9
х=3 см
АВ=4х=4·3=12 см
АС=7х=7·3=21 см