В прямоугольном треугольнике гипотенуза равна 34 см, а косинус одного из углов равен...

0 голосов
108 просмотров

В прямоугольном треугольнике гипотенуза равна 34 см, а косинус одного из углов равен 8\17. Найти катеты треугольника.


Геометрия (201 баллов) | 108 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Из основного тригонометрического тождества выясняется, что синус этого же угла равен 15/17. (sin^2+cos^2=1). Косинус есть отношение прилежащего катета к гипотенузе. То есть cos=a\c. Следовательно, а=cos*c. Таким образом узнаём, что прилежащий катет данного угла равен 8/17*34=16 см. Синус - это отношение противолежащей стороны к гипотенузе, значит, sin=b\c. Отсюда b=sin*c=15\17*34=30 см.
Ответ: 16 см, 30 см.

(300 баллов)