Sin(pi/6-x)-sin(pi/6+x)=√2
Решение Sin(π/6 - x) - sin(π/6 + x) = √2 2*[sin(π/6 - x - π/6 - x)/2*cos(π/6 - x + π/6 + x)/2] = √2 2*[sin(- x) * cos(π/6)] = √2 [- sin( x) * (√3/2) = √2/2 - sinx = √(2/3) sinx = - √(2/3) x = (-1)^n*arcsin(-√(2/3)) + πn, n ∈ Z