Вычислить:arcsin√3/2 +arccos √3/2, arctg0 + arcsin1/2, arcsin√2/2 + arccos 1/2, arcsin(-1)+ arccos√3/2, arccos(-√2/2)-arcsin1, arcsin(-√3/2)+arccos(-√3/2)
ArcSin√3/2 + arcCos√3/2 = π/3 + π/6 = π/2 arctg0 + arcSin1/2 = 0 + π/6 = π/6 arcSin√2/2 + arcCos 1/2 = π/4 + π/3 = 7π/12 arcSib(-1) +arcCos√3/2 = -π/2 + π/6 = -π/3 arcCos(-√2/2) - arcSin1 = 3π/4 - π/2 = π/4 arcSin(-√3/2) + arcCos(-√3/2) = - π/3 + 5π/6 = π/2