2)f '(x)=((x-4)' *√(x^2-8) -(√(x^2-8))' *(x-4)) /(√(x^2-8) )^2=
=((1*√(x^2-8) - ((x-4) / (2√x^2-8)) *(x^2-8)') /(x^2-8)=
=(√(x^2-8) - 2x(x-4) /(2√(x^2-8)) )/(x^2-8)=
= ( (√(x^2-8)^2 - (x^2-4x)) /√(x^2-8) ) /(x^2-8)=(x^2-8-x^2+4x) /((x^2-8) *√(x^2-8) )=(4x-8) /((x^2-8)*√x^2-8))