А) Опустим перпендикуляр из точки пересечения медиан на сторону ВС. Заметим, что эта высота равна данному нам расстоянию √3см. В прямоугольном треугольнике ОВН угол ОВН=60° (дано). Значит ОВ=ОН/Sin60 или ОВ=√3*2/√3=2см. Медианы делится точкой их пересечения в отношении 2:1, считая от вершины.
Значит ОВ =(2/3)*BD, тогда ВD=ОВ*3/2= 3 cм.
Ответ: BD=3см.
б) Если В прямоугольном треугольнике АВС угол С=60°. Значит АВ=АС*Sin60°=3√3см.
Ответ: АВ=3√3см.