Решение:
Пусть x - скорость первого автомобиля.
Тогда - x-10 - скорость второго автомобиля.
Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение:
(300/x-10)-(300/x)=1
(300x-300x+3000)/(x^2-10x)=1
3000/(x^2-10x)=1
x^2-10x=3000
x^2-10x-3000=0
D=b^2-4ac
D=12100>0-2 корня.
x=(-b+√D)/2a
x=(10+110)/2
x=120/2
x=60
Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи.
Скорость второго автомобиля равна 60 -10=50 км/ч
Ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.