Воспользуемся следующей формулой радиуса вписанной в треугольник окружности:
, где р - полупериметр треугольника, а, b, c - его стороны.
Начнём со второго задания, оно менее громоздкое:
2) ![p=\frac{5+6+9}{2}=10\\\\r=\sqrt{\frac{(10-5)(10-6)(10-9)}{10}}=\sqrt{\frac{5\cdot4\cdot1}{10}}=\sqrt{\frac{20}{10}}=\sqrt2 p=\frac{5+6+9}{2}=10\\\\r=\sqrt{\frac{(10-5)(10-6)(10-9)}{10}}=\sqrt{\frac{5\cdot4\cdot1}{10}}=\sqrt{\frac{20}{10}}=\sqrt2](https://tex.z-dn.net/?f=p%3D%5Cfrac%7B5%2B6%2B9%7D%7B2%7D%3D10%5C%5C%5C%5Cr%3D%5Csqrt%7B%5Cfrac%7B%2810-5%29%2810-6%29%2810-9%29%7D%7B10%7D%7D%3D%5Csqrt%7B%5Cfrac%7B5%5Ccdot4%5Ccdot1%7D%7B10%7D%7D%3D%5Csqrt%7B%5Cfrac%7B20%7D%7B10%7D%7D%3D%5Csqrt2)
1) С первым чуть сложнее, сильно громоздко получается, в "Латексе" долго набирать, но щас сделаю. Отметишь ещё раз как нарушение - дальше сама решать будешь... ))
![p=\frac{4+5+\sqrt{17}}{2}=\frac{9+\sqrt{17}}{2} p=\frac{4+5+\sqrt{17}}{2}=\frac{9+\sqrt{17}}{2}](https://tex.z-dn.net/?f=p%3D%5Cfrac%7B4%2B5%2B%5Csqrt%7B17%7D%7D%7B2%7D%3D%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B2%7D)
![r=\sqrt{\frac{(\frac{9+\sqrt{17}}{2}-4)(\frac{9+\sqrt{17}}{2}-5)(\frac{9+\sqrt{17}}{2}-\sqrt{17})}{\frac{9+\sqrt{17}}{2}}}=\\\\=\sqrt{\frac{(9+\sqrt{17}-8)(9+\sqrt{17}-10)(9+\sqrt{17}-2\sqrt{17})}{2}\cdot\frac{2}{9+\sqrt{17}}}=\\\\=\sqrt{\frac{(\sqrt{17}+1)(\sqrt{17}-1)(9-\sqrt{17})}{2}\cdot\frac{2}{9+\sqrt{17}}}=\\\\=\sqrt{\frac{(17-1)(9-\sqrt{17})}{9+\sqrt{17}}}=\sqrt{\frac{16(9-\sqrt{17})}{9+\sqrt{17}}}=4\sqrt{\frac{9-\sqrt{17}}{9+\sqrt{17}}}= r=\sqrt{\frac{(\frac{9+\sqrt{17}}{2}-4)(\frac{9+\sqrt{17}}{2}-5)(\frac{9+\sqrt{17}}{2}-\sqrt{17})}{\frac{9+\sqrt{17}}{2}}}=\\\\=\sqrt{\frac{(9+\sqrt{17}-8)(9+\sqrt{17}-10)(9+\sqrt{17}-2\sqrt{17})}{2}\cdot\frac{2}{9+\sqrt{17}}}=\\\\=\sqrt{\frac{(\sqrt{17}+1)(\sqrt{17}-1)(9-\sqrt{17})}{2}\cdot\frac{2}{9+\sqrt{17}}}=\\\\=\sqrt{\frac{(17-1)(9-\sqrt{17})}{9+\sqrt{17}}}=\sqrt{\frac{16(9-\sqrt{17})}{9+\sqrt{17}}}=4\sqrt{\frac{9-\sqrt{17}}{9+\sqrt{17}}}=](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B%5Cfrac%7B%28%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B2%7D-4%29%28%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B2%7D-5%29%28%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B2%7D-%5Csqrt%7B17%7D%29%7D%7B%5Cfrac%7B9%2B%5Csqrt%7B17%7D%7D%7B2%7D%7D%7D%3D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B%289%2B%5Csqrt%7B17%7D-8%29%289%2B%5Csqrt%7B17%7D-10%29%289%2B%5Csqrt%7B17%7D-2%5Csqrt%7B17%7D%29%7D%7B2%7D%5Ccdot%5Cfrac%7B2%7D%7B9%2B%5Csqrt%7B17%7D%7D%7D%3D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B%28%5Csqrt%7B17%7D%2B1%29%28%5Csqrt%7B17%7D-1%29%289-%5Csqrt%7B17%7D%29%7D%7B2%7D%5Ccdot%5Cfrac%7B2%7D%7B9%2B%5Csqrt%7B17%7D%7D%7D%3D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B%2817-1%29%289-%5Csqrt%7B17%7D%29%7D%7B9%2B%5Csqrt%7B17%7D%7D%7D%3D%5Csqrt%7B%5Cfrac%7B16%289-%5Csqrt%7B17%7D%29%7D%7B9%2B%5Csqrt%7B17%7D%7D%7D%3D4%5Csqrt%7B%5Cfrac%7B9-%5Csqrt%7B17%7D%7D%7B9%2B%5Csqrt%7B17%7D%7D%7D%3D)
![4\sqrt{\frac{(9-\sqrt{17})(9+\sqrt{17})}{(9+\sqrt{17})(9+\sqrt{17})}}=4\sqrt{\frac{81-17}{(9+\sqrt{17})^2}}=4\sqrt{\frac{64}{(9+\sqrt{17})^2}}=4\cdot\frac{8}{(9+\sqrt{17})}=\\\\=\frac{32}{(9+\sqrt{17})} 4\sqrt{\frac{(9-\sqrt{17})(9+\sqrt{17})}{(9+\sqrt{17})(9+\sqrt{17})}}=4\sqrt{\frac{81-17}{(9+\sqrt{17})^2}}=4\sqrt{\frac{64}{(9+\sqrt{17})^2}}=4\cdot\frac{8}{(9+\sqrt{17})}=\\\\=\frac{32}{(9+\sqrt{17})}](https://tex.z-dn.net/?f=4%5Csqrt%7B%5Cfrac%7B%289-%5Csqrt%7B17%7D%29%289%2B%5Csqrt%7B17%7D%29%7D%7B%289%2B%5Csqrt%7B17%7D%29%289%2B%5Csqrt%7B17%7D%29%7D%7D%3D4%5Csqrt%7B%5Cfrac%7B81-17%7D%7B%289%2B%5Csqrt%7B17%7D%29%5E2%7D%7D%3D4%5Csqrt%7B%5Cfrac%7B64%7D%7B%289%2B%5Csqrt%7B17%7D%29%5E2%7D%7D%3D4%5Ccdot%5Cfrac%7B8%7D%7B%289%2B%5Csqrt%7B17%7D%29%7D%3D%5C%5C%5C%5C%3D%5Cfrac%7B32%7D%7B%289%2B%5Csqrt%7B17%7D%29%7D)