Через точку А проведены диаметр АС и две хорды АВ и АД так, что хорда АВ равна радиусу...

0 голосов
208 просмотров

Через точку А проведены диаметр АС и две хорды АВ и АД так, что хорда АВ равна радиусу окружности, точка Д делит полуокружность АС на две равные дуги. Найти углы четырехугольника АВСД, если точки С и Д лежат по разные стороны от диаметра АС. Задача 2. Отрезок ВД - диаметр окружности с центром О. Хорда АС пересекает радиус ОВ под прямым углом и точкой пересечения делит его пополам. Найти углы четырехугольника АВСД и градусные меры дуг АВ, АД, ВС, СД.


Геометрия (47 баллов) | 208 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1. Угол, образованный двумя хордами, опирающийся на диаметр является прямым (по определению), следовательно углы В и Д в четырехугольнике АВСД равны 90 гр. Найдем два других угла. Рассмотрим треугольник АВО. Он равносторонний, тк. АВ=ВО и АО (по определению), которые есть радиусы окружности. Следовательно угол ВАО равен 60 гр.
Рассмотрим треугольник АСД. Он прямоугольный и равнобедренный, т.к. хорды, стягивающие равные дуги, равны. Следовательно угол ДАО равен 45 гр. Теперь мы можем найти угол А четырех угольника. Это сумма углов ВАО и ДАО. Остается четвертый угол. Ну, это просто: все найденные углы вычитаем из 360 гр.

(2.8k баллов)
0

спасибо)))

0

Основание равнобедренного треугольника 18 см, высота 12 см. Найти радиус описанной и вписанной

0

окружности

0

помоги пожалуйста)))

0 голосов

Угол А = углу С = 90 град. д/п.: проведем отрезки АО = СО = ВО - радиус образовались равносторонние треугольники АОВ и ВОС в них углы = 60 град. дуга АВ и дуга ВС = 60 град. дуга АD и дуга СD = (360 - 60 - 60)/2 = 120 град. найдем угол D: 360 = 90 + 120 + 90 + D угол D = 60 град задача -1)угол д=в=90° -т.к опираются на диаметр и оба впискнные ,ад=сд=180/2(по. Усл ) угол CAD =ACD =90/2 так выписанные

(1.0k баллов)
0

Сначала вторая задача

0

а с рисунком можешь помочь?))

0

Как и в первой задаче углы А и С четырех угольника АВСД равны 90 гр, т.к. они прямые. АО - радиус равен АВ, т.к. Фл

0

Продолжаю. Пусть Ас пересекает диаметр ВД в точке К, тогда АК и СК являются медианами и высотами в треугольниках ВАО и ВСО. По определению эти треугольники равнобедренные, следовательно АВ равна АО, а значит, как и в первой задаче эти треугольники равносторонние, т.е. углы у них равны 60 гр.

0

Т.о. найден угол В=60+60=120. Угол Д находится легко при наличии трех углов четырех угольника. градусные меры дуг равны градусным мерам центральных углов. Т.к. мы показали, что центральные углы ВОА и ВОС равны 60 гр, то и дуги имеют ту же градусную меру. Две другие, соответственно, равны (360-120)/2