Пятый биномиальный коэффициент разложения равен C(n,4). Третий биномиальный коэффициент равен C(n,2). По условию, C(n,4)/C(n,2)=1/2
2*C(n,4)=C(n,2)
2*n!/((n-4)!*4!)=n!/((n-2)!*2!)
2 / 4! = 1/((n-2)(n-3)*2!)
(n-2)(n-3)=6
n^2-5n=0
Отсюда n=5.
Общий вид члена разложения бинома Ньютона при n=5 выглядит так:
Очевидно, что иррациональности не будет, если k нечетное.
Выпишем 2-й (k=1), 4-й (k=3) и 6-й (k=5) члены разложения:
k=1:
k=3:
k=5: