Точки А1, B1 и С1 симметричны центру I вписанной в треугольник АВС окружности...

0 голосов
54 просмотров

Точки А1, B1 и С1 симметричны центру I вписанной в треугольник АВС окружности относительно его сторон ВС, АС и АВ соответственно. Окружность, описанная около треугольника А1В1С1, проходит через точку А. Найдите радиус окружности, описанной около треугольника АВС, если ВС = а.


Геометрия (90 баллов) | 54 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

В тр-ке АIС1имеем AI=C1I, значит он равнобедренный и угол IC1A=углу С1AI; в нем же АВ - медиана, перпендикулярная стороне C1I, значит тр-к С1АI - тоже равнобедренный (углы IC1A=AIC1). Итак, в тр-ке АIC1 все углы равны по 60.

В тр-ке АВС АI - биссектриса, так как центр I вписанной окружности лежит на пересечении биссектрис. Значит угол ВАI = IAC и угол ВАС = 60. В тр-ке АВС по теореме синусов 2R=BC/SinA, то есть R = a/2Sin60 = a/(2*√3/2) = a/√3;

(117k баллов)
0 голосов

О - центр окружности - точнее, обеих окружностей, заданных в задаче (ясно, что точки А1 В1 С1 равноудалены от центра вписанной окружности, то есть окружность, вписанная в АВС и окружность, описанная вокруг А1В1С1 - и проходящая через А - имеют общий центр).

В треугольнике АС1О стороны ОС1 и ОА равны, и - кроме того, медиана АВ перпендикулярна стороне ОС1. То есть АС1О -  равносторонний треугольник.

Аналогично и АВ1О - равносторонний треугольник, но уже и без того ясно, что угол ВАО = 30 градусам, а угол САВ = 60 градусам.

Отсюда по теореме синусов 2Rsin(60°) = a; R = a/√3;