Число 8 в первой степени оканчивается на 8, во второй - на 4, в третьей - на 2, в четвёртой - на 6, в пятой - опять на 8.
Число 2 в первой степени оканчивается на 2, во второй - на 4, в третьей - на 8, в четвёртой - на 6, в пятой - опять на 2, в шестой - снова на 4 и т.д. То есть соблюдается определённая цикличность. А значит, 2 в тринадцатой степени будет оканчиваться на 2.
2+8=10, следовательно, сумма будет оканчиваться на 0, а значит, делиться на 10 без остатка, что и требовалось доказать.