дана арифметическая прогрессия в которой 100 чисел. разность прогрессии равна 50. а)...

0 голосов
37 просмотров

дана арифметическая прогрессия в которой 100 чисел. разность прогрессии равна 50.

а) можеть ли в прогрессии быть ровно 13 чисел кратных 9?

б) какое наименьшее количество чисел кратных 9 может быть в прогрессии?

в) какое наибольшее количество чисел кратных 9 может быть в прогрессии


Алгебра (22 баллов) | 37 просмотров
Дан 1 ответ
0 голосов

d=50

последний член прогрессии a100= a1+d*(n1-) = a1 +d*99

1)Максимальное количество кратных 9 чисел в последовательности будет в том случае, если 1-ый член прогрессии будет кратен 9.

9

9 + d*9

9 + d*18

9 + d*27

9 + d*36

9 + d*45

9 + d*54

9 + d*63

9 + d*72

9 + d*81

9 + d*90

9 + d*99

Не может быть, так как наибольшее кол-во чисел прогрессии, кратных 9, равно 12.

2) Наименьшее кол-во чисел достигается в основном при a1 = 0

наменьшее кол-во чисел, кратных 9, равно 10

3) смотреть пункт (1)

 

(112 баллов)