[√(n+2)*(√(n+2)+√(n-2))]/[√(n+2)*(√(n+2)-√(n-2))] +
+[√(n+2)*(√(n+2)-√(n-2))]/[√(n+2)*(√(n+2)+√(n-2))]=
=(√(n+2)+√(n-2))/(√(n+2)-√(n-2))+(√(n+2)-√(n-2))/(√(n+2)+√(n-2))=
(n+2+2√(n²-2)+n-2+n+2-2√(n²-2)+n-2)/[(√(n+2)+√(n-2))(√(n+2)-√(n-2))]=
=4n/(n+2-n+2)=4n/4=n
√(√2-1)²+2-√2=√2-1+2-√2=1