У правильной треугольной призмы высота равна 2 дм, радиус описанной около её сферы тоже...

0 голосов
190 просмотров

У правильной треугольной призмы высота равна 2 дм, радиус описанной около её сферы тоже равен 2 дм.Найдите сторону основания призмы.Нужен рисунок , ,решение !!


Геометрия (15 баллов) | 190 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Центр сферы лежит на середине высоты  призмы. 

Радиус сферы - гипотенуза прямоугольного треугольника с катетами, равными половине высоты и радиусу описанной вопруг основания призмы окружности  ( см. рис.2 приложения)

ОО1- половина высоты призмы=1

АО =R=2

АО1=r

По т.Пифагора 

АО1=√[R²-(0,5h)²]=√(4-1)=√3

 Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты и равен а/√3.

а/√3=√3

а=3


image
(228k баллов)