АВСД - трапеция, вписанная окружность касается сторон окружности АВ, ВС , СД и АД в точках К, М, Н и Р соответственно, АК=4 см, ВК=1 см.
Радиус вписанной окружности: r=√(АК·ВК)=√4=2 см - первый ответ.
Опустим высоту ВЕ на основание АД.
В тр-ке АВЕ cosA=АЕ/АВ. АВ=АК+ВК=5 см.
В равнобедренной трапеции АЕ=(АД-ВС)/2.
АР=АК и ВК=ВМ как касательные к окружности из одной точки соответственно, АД=2АР=2АК=8 см, ВС=2ВМ=2ВК=2 см.
АЕ=(8-2)/2=3 см.
cosA=3/5.
В тр-ке АВД по т. косинусов ВД²=АВ²+АД²-2АВ·АД·cosA,
ВД²=5²+8²-2·5·8·3/5=41,
ВД=√41.
В тр-ке АВД ВД/sinA=2R ⇒ R=ВД/2sinA.
Окружность, описанная около треугольника АВД, также является описанной около трапеции АВСД.
sin²A=1-cos²A=1-9/25=16/25,
sinA=4/5.
R=5√41/8 см - второй ответ.