Решите тождества: 1)sin(5pi/4 + a) = - sin (3pi/4 - a) 2) cos (a - 2pi/3)= cos (a +...

0 голосов
82 просмотров

Решите тождества:

1)sin(5pi/4 + a) = - sin (3pi/4 - a)

2) cos (a - 2pi/3)= cos (a + 4pi/3)


Алгебра (28 баллов) | 82 просмотров
Дан 1 ответ
0 голосов

1)sin(\frac{5\pi}{4}+a)=-sin(\frac{3\pi}{4}-a)\\\sin\frac{5\pi}{4}*cosa+sina*cos\frac{5\pi}{4}=-(sin\frac{3\pi}{4}*cosa-sina*cos\frac{3\pi}{4})\\sin(\pi+\frac{\pi}{4})*cosa+sina*cos(\pi+\frac{\pi}{4})=-sin(\pi-\frac{\pi}{4})*cosa+sina*cos(\pi-\frac{\pi}{4})\\-sin\frac{\pi}{4}*cosa+sina*-cos\frac{\pi}{4}=-sin\frac{\pi}{4}*cosa+sina*-cos\frac{\pi}{4}

Доказано. 

 

cos(a-\frac{2\pi}{3})=cos(a+\frac{4\pi}{3})\\cosa*cos\frac{2\pi}{3}+sina*sin\frac{2\pi}{3}=cosa*cos\frac{4\pi}{3}-sina*sin\frac{4\pi}{3}\\cosa*cos(\pi-\frac{\pi}{3})+sina*sin(\pi-\frac{\pi}{3})=cosa*cos(\pi+\frac{\pi}{3})-sina*sin(\pi+\frac{\pi}{3})\\cosa*-cos\frac{\pi}{3}+sina*sin\frac{\pi}{3}=cosa*-cos\frac{\pi}{3}-(-sin\frac{\pi}{3})*sina

Доказано. 

(8.0k баллов)