Вершина А квадрата abcd является центром окружности, радиус которого равен половине...

0 голосов
116 просмотров

Вершина А квадрата abcd является центром окружности, радиус которого равен половине диагонали квадрата. Докажите, что прямая BD является касательной к этой окружности


Геометрия (28 баллов) | 116 просмотров
Дан 1 ответ
0 голосов

R - радиус окружности.

Док-во:

Пусть диагонали пересекаются в точке О.

Так как диагонали квадрата взаимно перпендиклярны,а радиус равен половине диагонали, то АО=R.

Радиус перпендикулярен касательной по её свойству.

Так как радиус и есть половина диагонали AC, перпендикулярной диагонали BD, то BD является касательной к окружности с центром в точке О.

(844 баллов)