Две бригады,работая вместе ,могут выполнить некоторую работу за 12 часов.Первая...

0 голосов
205 просмотров

Две бригады,работая вместе ,могут выполнить некоторую работу за 12 часов.Первая бригада,работая одна,могла бы выполнить эту работу на 10 часов быстрее,чем вторая.Сколько часов потребовалось бы первой бригаде для выполнения этой работы ?


Алгебра (12 баллов) | 205 просмотров
Дано ответов: 2
0 голосов

Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов. 

Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час). 

За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение: 

12*(1/x + 1/(x+10)) = 1. 

Умножаем левую и правую части на x(x+10): 
12(x+10) + 12x = x(x+10); 
x² + 10x − 24x − 120 = 0; 
x² − 14x − 120 = 0. 

Выбираем положительное значение x: 
x = 7 + √(49+120) = 20. 

Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа. 

Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok). 

ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
(127 баллов)
0 голосов

Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов. 

Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час). 

За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение: 

12*(1/x + 1/(x+10)) = 1. 

Умножаем левую и правую части на x(x+10): 
12(x+10) + 12x = x(x+10); 
x² + 10x − 24x − 120 = 0; 
x² − 14x − 120 = 0. 

Выбираем положительное значение x: 
x = 7 + √(49+120) = 20. 

Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа. 

Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok). 

ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.

(24 баллов)