Решить уравнение 5[(x-2)/(x+1)]^2-44[(x+2)/(x-1)]^2 +12*(x^2-4)/(x^2-1)=0

0 голосов
28 просмотров

Решить уравнение
5[(x-2)/(x+1)]^2-44[(x+2)/(x-1)]^2 +12*(x^2-4)/(x^2-1)=0


Алгебра (286 баллов) | 28 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

ОДЗ:
х+1≠0
х-1≠0

Это однородное уравнение вида
au²+bv²+cuv=0.
Делим на (х+2)²/(х-1)²:
5t²+12t-44=0,  где    t=(x-2)(x-1)/(x+2)(x+1)
D=144-4·5·(-44)=1024.
t=(-12-32)/10=-4,4            или            t=(-12+32)/10=2
(x-2)(x-1)/(x+2)(x+1)= - 4,4         или    (x-2)(x-1)/(x+2)(x+1)=2
-4,4·(х²-3х+2)=х²+3х+2          или    2·(х²-3х+2)=х²+3х+2
5,4х²-10,2х+10,8=0                   или    х²-9х+2=0
D=10,2²-4·5,4·10,8 <0               D=81-8=73<br>уравнение не имеет корней        x=(9-√73)/2;  x=(9+√73)/2.

О т в е т. x=(9-√73)/2;  x=(9+√73)/2.





(413k баллов)
0

спасибо

0

Успехов!