![1) (12\frac{1}2)^4(\frac{2}{25})^{14}(0,08)^{-11}=(\frac{25}2)^4(\frac{2}{25})^{14}(\frac{2}{25})^{-11}=(\frac{2}{25})^{-4}(\frac{2}{25})^{14}(\frac{2}{25})^{-11}= 1) (12\frac{1}2)^4(\frac{2}{25})^{14}(0,08)^{-11}=(\frac{25}2)^4(\frac{2}{25})^{14}(\frac{2}{25})^{-11}=(\frac{2}{25})^{-4}(\frac{2}{25})^{14}(\frac{2}{25})^{-11}=](https://tex.z-dn.net/?f=1%29+%2812%5Cfrac%7B1%7D2%29%5E4%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B14%7D%280%2C08%29%5E%7B-11%7D%3D%28%5Cfrac%7B25%7D2%29%5E4%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B14%7D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B-11%7D%3D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B-4%7D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B14%7D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B-11%7D%3D)
![=(\frac{2}{25})^{-4+14-11}=(\frac{2}{25})^{-1}=\frac{25}2 =(\frac{2}{25})^{-4+14-11}=(\frac{2}{25})^{-1}=\frac{25}2](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B-4%2B14-11%7D%3D%28%5Cfrac%7B2%7D%7B25%7D%29%5E%7B-1%7D%3D%5Cfrac%7B25%7D2)
Число обратное данному: ![\frac{2}{25} \frac{2}{25}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B25%7D)
![\frac{(x^2+10)(x+10)^2}{60-x^2}\geq0 \frac{(x^2+10)(x+10)^2}{60-x^2}\geq0](https://tex.z-dn.net/?f=%5Cfrac%7B%28x%5E2%2B10%29%28x%2B10%29%5E2%7D%7B60-x%5E2%7D%5Cgeq0)
- корней не имеет
- корень x=-10
- корни ![x=2\sqrt{15};x=-2\sqrt{15} x=2\sqrt{15};x=-2\sqrt{15}](https://tex.z-dn.net/?f=x%3D2%5Csqrt%7B15%7D%3Bx%3D-2%5Csqrt%7B15%7D)
Решаем методом интервалов(см.вложение)
Целые решение: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Ответ: 13.
![|x-4|+|x+2|-1 |x-4|+|x+2|-1](https://tex.z-dn.net/?f=%7Cx-4%7C%2B%7Cx%2B2%7C-1)
Так как x e [-1;3] , то посмотри, как раскрывается модуль(если модуль <0, то он расрывается отрицательно, елси >0, то расрывается положительно)
Получим: ![-x+4+x+2-1 -x+4+x+2-1](https://tex.z-dn.net/?f=-x%2B4%2Bx%2B2-1)
![6-1 6-1](https://tex.z-dn.net/?f=6-1)
![5 5](https://tex.z-dn.net/?f=5)