Упростите выражение:(sin 2x + sin 5x+ sin 8x)/(cos 2x+ cos 5x+ cos 8x)

0 голосов
89 просмотров

Упростите выражение:(sin 2x + sin 5x+ sin 8x)/(cos 2x+ cos 5x+ cos 8x)


Алгебра (200 баллов) | 89 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

(sin5x+2sin5xcos3x)/(cos5x+2cos5xcos3x)=[sin5x(2+cos3x)]/[cos5x(2+cos3x)]=sin5x/cos5x=tg5x

(44.8k баллов)
0 голосов

В числителе преобразовать сумму sin2x+sin8x=2sin(2x+8x)/2*cos(2x-8x)/2=2sin5x*cos3x, в знаменателе cos2x+cos8x=2cos5x*cos3x. В числителе вынести за скобку sin5x, в знаменателе cos5x. Выражения в скобках сократятся, останется sin5x/cos5x, то есть tg5x -это и есть ответ.

(38 баллов)