x|x+2a|+1=a
1) х + 2а > 0, тогда
х(х+2а)+1 = а
0\\a_{1}=\frac{-1-\sqrt{5}}{2};a_{2}=\frac{-1+\sqrt{5}}{2}" alt="x^{2}+2ax+1=a\\x^{2}+2ax+1-a=0\\D=(2a)^{2}-4(1-a)=0\\4a^{2}-4+4a=0\\a^{2}+a-1=0\\D_{1}=1+4=5>0\\a_{1}=\frac{-1-\sqrt{5}}{2};a_{2}=\frac{-1+\sqrt{5}}{2}" align="absmiddle" class="latex-formula">
2) x+2a<0, тогда</p>
х(-х-2а)+1 = а
![-x^{2}-2ax+1=a\\-x^{2}-2ax+1-a=0\\x^{2}+2ax+a-1=0\\D=(2a)^{2}-4(a-1)=0\\4a^{2}-4a+4=0\\a^{2}-a+1=0\\D_{1}=1-4=-3<0; -x^{2}-2ax+1=a\\-x^{2}-2ax+1-a=0\\x^{2}+2ax+a-1=0\\D=(2a)^{2}-4(a-1)=0\\4a^{2}-4a+4=0\\a^{2}-a+1=0\\D_{1}=1-4=-3<0;](https://tex.z-dn.net/?f=-x%5E%7B2%7D-2ax%2B1%3Da%5C%5C-x%5E%7B2%7D-2ax%2B1-a%3D0%5C%5Cx%5E%7B2%7D%2B2ax%2Ba-1%3D0%5C%5CD%3D%282a%29%5E%7B2%7D-4%28a-1%29%3D0%5C%5C4a%5E%7B2%7D-4a%2B4%3D0%5C%5Ca%5E%7B2%7D-a%2B1%3D0%5C%5CD_%7B1%7D%3D1-4%3D-3%3C0%3B)
здесь корней нет.
3) х+2а = 0, тогда а = 1;
4) х = 0, то а =1.
Ответ: уравнение имеет ровно один корень при![a={-1-\sqrt{5}; 1; -1+\sqrt{5}.} a={-1-\sqrt{5}; 1; -1+\sqrt{5}.}](https://tex.z-dn.net/?f=a%3D%7B-1-%5Csqrt%7B5%7D%3B+1%3B+-1%2B%5Csqrt%7B5%7D.%7D)