ABCD параллелограмм .M принадлежит DC ,DM=1/7 стороны DC .Площадь ADM=6см в квадрате...

0 голосов
53 просмотров

ABCD параллелограмм .M принадлежит DC ,DM=1/7 стороны DC .Площадь ADM=6см в квадрате .Найти площадь ABCD


Геометрия (17 баллов) | 53 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

S(ABM) = (1/2)*S(ABCD)
S(ABM) = (1/2)*AB*h(AB)
h(AB) ---высота параллелограмма к стороне АВ
S(ABCD) = AB*h(AB)
S(ABM) = половине площади параллелограмма
тогда и S(ADM) + S(BMC) = половине площади параллелограмма
S(ADM) = (1/2)*DM*h(AB)
S(BMC) = (1/2)*MC*h(AB)
площади треугольников с равными высотами относятся как основания)))
DM = (1/7)*DC
DC = 7*DM
MC = (6/7)*DC
DM : MC = 1:6
S(ADM) : S(BMC) = 1:6
S(BMC) = 6*S(ADM)
(1/2)*S(ABCD) = S(ADM) + S(BMC) = S(ADM) + 6*S(ADM) = 7*S(ADM)
S(ABCD) = 14*S(ADM) = 14*6 = 84 (см²)

(236k баллов)