Помогите пожалуйста!!! В окружность с радиусом 13 вписан равнобедренный треугольник....

0 голосов
127 просмотров

Помогите пожалуйста!!!
В окружность с радиусом 13 вписан равнобедренный треугольник. Известно, что синус угла при основании треугольника равен 12/13. Радиус OM пересекает под прямым углом боковую сторону в точке K. Найдите длину отрезка OK.


Геометрия (541 баллов) | 127 просмотров
0

ответ 5 см ?

Дан 1 ответ
0 голосов
Правильный ответ

Так как радиус ОМ перпендикулярен боковой стороне, то по определению центра описанной окружности точка К - середина боковой стороны.
Пусть основание треугольника АС, тогда ВО равно радиусу R описанной окружности.
ОК = ОВ*cosKOB.
Угол КОВ равен углу А как взаимно перпендикулярные и cosKOB = cosА.
cosA = √(1-sin²A) = √(1-(144/169)) = √(25/169) = 5/13.
Тогда ОК = 13*(5/13) = 5.

(309k баллов)