Дан треугольник со сторонами AB=5 BC=7 AC=8. Из вершины B опущены перпендикуляры BM и BN...

0 голосов
56 просмотров

Дан треугольник со сторонами AB=5 BC=7 AC=8. Из вершины B опущены перпендикуляры BM и BN на биссектрисы внешних углов при вершинах A и C (биссектрисы лежат в той же полу- плоскости, что и вершина B). Найти длину отрезка MN.


Геометрия (686 баллов) | 56 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если продолжить перпендикуляры из вершины В до пересечения с продолжениями стороны АС в точках Р и Е, то получим:
РА = АВ, СЕ = СВ.
Отрезок МN = это средняя линия треугольника РВЕ,
Отрезок РЕ = 5+8+7 = 20,
МN = 20/2 = 10.

(309k баллов)