![image](https://tex.z-dn.net/?f=1%29%5Cquad+y%3D%5Csqrt%5B4%5D%7B+%5Cfrac%7B125%5E%7B3x-5%7D%7D%7B64%5E%7B3x-5%7D%7D-%281%5Cfrac%7B9%7D%7B16%7D+%29%5E%7B1%2Bx%7D%7D%5C%5C%5C%5COOF%3A%5C%3B+%5C%3B+%C2%A0%5Cfrac%7B%285%5E3%29%5E%7B3x-5%7D%7D%7B%284%5E3%29%5E%7B3x-5%7D%7D-%28%5Cfrac%7B25%7D%7B16%7D%29%5E%7B1%2Bx%7D+%5Cgeq+0%5C%5C%5C%5C%28%5Cfrac%7B5%7D%7B4%7D%29%5E%7B9x-15%7D+%5Cgeq+%28%5Cfrac%7B5%7D%7B4%7D%29%5E%7B2%2B2x%7D%5C%5C%5C%5C%5Cfrac%7B5%7D%7B4%7D%3E1%5C%3B+%5C%3B+%5Cto+%5C%3B+%5C%3B+9x-15+%5Cgeq+2%2B2x%5C%5C%5C%5C7x+%5Cgeq+17%5C%3B+%2C%5C%3B+%5C+x+%5Cgeq+%5Cfrac%7B17%7D%7B7%7D%5C%3B+%2C%5C%3B+%5C%3B+x+%5Cgeq+2%5Cfrac%7B3%7D%7B7%7D%5C%5C%5C%5Cx%5Cin+%5B%5C%2C+2%5Cfrac%7B3%7D%7B7%7D%5C%3B+%3B%5C%3B+%2B%5Cinfty+%29)
1\; \; \to \; \; 9x-15 \geq 2+2x\\\\7x \geq 17\; ,\; \ x \geq \frac{17}{7}\; ,\; \; x \geq 2\frac{3}{7}\\\\x\in [\, 2\frac{3}{7}\; ;\; +\infty )" alt="1)\quad y=\sqrt[4]{ \frac{125^{3x-5}}{64^{3x-5}}-(1\frac{9}{16} )^{1+x}}\\\\OOF:\; \; \frac{(5^3)^{3x-5}}{(4^3)^{3x-5}}-(\frac{25}{16})^{1+x} \geq 0\\\\(\frac{5}{4})^{9x-15} \geq (\frac{5}{4})^{2+2x}\\\\\frac{5}{4}>1\; \; \to \; \; 9x-15 \geq 2+2x\\\\7x \geq 17\; ,\; \ x \geq \frac{17}{7}\; ,\; \; x \geq 2\frac{3}{7}\\\\x\in [\, 2\frac{3}{7}\; ;\; +\infty )" align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=2%29%5Cquad+y%3D+%5Cfrac%7Bx%5E2-64%7D%7B25%5E%7Bx-0%2C5%7D%2B4%5Ccdot+5%5E%7Bx%7D-1%7D+%5C%5C%5C%5COOF%3A%5C%3B+%5C%3B+%285%5E2%29%5E%7Bx-0%2C5%7D%2B4%5Ccdot+5%5E%7Bx%7D-1%5Cne+0%5C%5C%5C%5C5%5E%7B2x-1%7D%2B4%5Ccdot+5%5E%7Bx%7D-1%5Cne+0%5C%5C%5C%5C5%5E%7B2x%7D%5Ccdot+5%5E%7B-1%7D%2B4%5Ccdot+5%5E%7Bx%7D-1%5Cne+0%5C%5C%5C%5Ct%3D5%5E%7Bx%7D%3E0%5C%3B+%2C%5C%3B+%5C%3B+t%5E2%5Ccdot+%5Cfrac%7B1%7D%7B5%7D%2B4t-1%5Cne+0%5C%3B+%5C%3B+%5Cto+%5C%5C%5C%5Ct%5E2%2B20t-5%5Cne+0%5C%5C%5C%5CD%3D420%5C%3B+%2C%5C%3B+%5C%3B+t_%7B1%2C2%7D%3D%5Cfrac%7B-20%5Cpm+%5Csqrt%7B420%7D%7D%7B2%7D%3D-10%5Cpm+%5Csqrt%7B105%7D%5C%5C%5C%5Ct_1%5Capprox+0%2C25%5C%3B+%3B%5C%3B+%5C%3B+t_2%5Capprox+-20%2C25%3C0%5C%5C%5C%5C5%5E%7Bx%7D%5Cne+-10%2B%5Csqrt%7B105%7D%5C%3B+%5C%3B+%5Cto+%5C%3B+%5C%3B+x%5Cne+log_5%28-10%2B%5Csqrt%7B105%7D%29%5C%5C%5C%5Cx%5Cin+%28-%5Cinfty+%2C-10%2B%5Csqrt%7B105%7D%29%5Ccup+%28-10%2B%5Csqrt%7B105%7D%2C%2B%5Cinfty+%29)
0\; ,\; \; t^2\cdot \frac{1}{5}+4t-1\ne 0\; \; \to \\\\t^2+20t-5\ne 0\\\\D=420\; ,\; \; t_{1,2}=\frac{-20\pm \sqrt{420}}{2}=-10\pm \sqrt{105}\\\\t_1\approx 0,25\; ;\; \; t_2\approx -20,25<0\\\\5^{x}\ne -10+\sqrt{105}\; \; \to \; \; x\ne log_5(-10+\sqrt{105})\\\\x\in (-\infty ,-10+\sqrt{105})\cup (-10+\sqrt{105},+\infty )" alt="2)\quad y= \frac{x^2-64}{25^{x-0,5}+4\cdot 5^{x}-1} \\\\OOF:\; \; (5^2)^{x-0,5}+4\cdot 5^{x}-1\ne 0\\\\5^{2x-1}+4\cdot 5^{x}-1\ne 0\\\\5^{2x}\cdot 5^{-1}+4\cdot 5^{x}-1\ne 0\\\\t=5^{x}>0\; ,\; \; t^2\cdot \frac{1}{5}+4t-1\ne 0\; \; \to \\\\t^2+20t-5\ne 0\\\\D=420\; ,\; \; t_{1,2}=\frac{-20\pm \sqrt{420}}{2}=-10\pm \sqrt{105}\\\\t_1\approx 0,25\; ;\; \; t_2\approx -20,25<0\\\\5^{x}\ne -10+\sqrt{105}\; \; \to \; \; x\ne log_5(-10+\sqrt{105})\\\\x\in (-\infty ,-10+\sqrt{105})\cup (-10+\sqrt{105},+\infty )" align="absmiddle" class="latex-formula">