Доказать, что отрезки, соединяющие середины противоположных сторон выпуклого...

0 голосов
131 просмотров

Доказать, что отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника, и отрезки, соединяющие середины диагоналей, пересекаются в одной точке


Геометрия (59 баллов) | 131 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Четырехугольник ABCD, К - середина АВ, L - середина ВС, M - середина CD, N - середина AD, Р - середина АС, Q - середина BD. Надо доказать, что КМ, LN и PQ пересекаются в одной точке.

КN - средняя линяя в треугольнике ABD, поэтому KN II BD, KN = BD/2; точно также доказывается, что LM II BD, KL II AC, MN II AC. Поэтому KLMN - параллелограмм, в котором LN и KM - диагонали, поэтому в точке пересечения они делятся пополам, то есть КМ проходит через середину LN.

С другой стороны,

LQ - средняя линяя в треугольнике BCD, то есть LQ II CD, а PN - средняя линяя в треугольнике ACD, PN II CD, следовательно, PN II LQ.

LP - средняя линяя в треугольнике ABC, то есть LP II AB, а QN - средняя линяя в треугольнике ABD, QN II AB, следовательно, QN II LP.

Поэтому PLQN - параллелограмм, и его диагонали PQ и LN в точке пересечения делятся пополам.

То есть PQ, так же как и КМ, проходит через середину LN.

Всё доказано. 

(69.9k баллов)