0,} \atop {2-\log_3(9+8x-x^2)\geq0;}} \right. \\ x^2-8x-9<0, \\ x^2-8x-9=0, \\ x_1=-1, x_2=9, \\ (x+1)(x-3)<0, \\ -1<x<9; \\\log_3(9+8x-x^2)\leq2, \\ 9+8x-x^2\leq3^2, \\ 8x-x^3\leq0, \\ x(x-8)\geq0, \\ x_1=0, x_2=8, \\ x\leq0, x\geq8, \\ x\in(-1;0]\cup[8;9),\\ 0+8=8." alt="\left \{ {{9+8x-x^2>0,} \atop {2-\log_3(9+8x-x^2)\geq0;}} \right. \\ x^2-8x-9<0, \\ x^2-8x-9=0, \\ x_1=-1, x_2=9, \\ (x+1)(x-3)<0, \\ -1<x<9; \\\log_3(9+8x-x^2)\leq2, \\ 9+8x-x^2\leq3^2, \\ 8x-x^3\leq0, \\ x(x-8)\geq0, \\ x_1=0, x_2=8, \\ x\leq0, x\geq8, \\ x\in(-1;0]\cup[8;9),\\ 0+8=8." align="absmiddle" class="latex-formula">