Два экскаватора, работая вместе, могут выкопать котлован за 12 дней.Первый, работая...

0 голосов
369 просмотров

Два экскаватора, работая вместе, могут выкопать котлован за 12 дней.Первый, работая отдельно, может выкопать этот котлован на 10 дней быстрее,чем второй.За сколько дней выкопает котлован каждый экскаватор, работая отдельно.

С помощью системы уравнений.


Алгебра (140 баллов) | 369 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

I способ:

Предположим, что второй экскаватор может вырыть котлован за х дней, тогда первый экскаватор может вырыть котлован за (х-10) дней

таким образом

\frac{1}{x-10} - производительность первого экскаватора

 

\frac{1}{x} - производительность второго экскаватора

 

(\frac{1}{x-10}+\frac{1}{x}) - производительность двух экскаваторов при их совместной работе, а из условия задачи их производительность равна \frac{1}{12}

согласно этим данным составим и решим уравнение:

 

\frac{1}{x-10}+\frac{1}{x}=\frac{1}{12}

 

12x+12(x-10)=x(x-10)

 

12x+12x-120=x^{2}-10x

 

24x-120=x^{2}-10x

 

x^{2}-10x-24x+120=0

 

x^{2}-34x+120=0

 

Cчитаем дискриминант:

 

D=b^{2}-4ac=(-34)^{2}-4\cdot1\cdot120=1156-480=676

 

Дискриминант положительный

 

\sqrt{D}=26

 

Уравнение имеет два различных корня:

 

x_{1}=\frac{-b+\sqrt{D}}{2a}=\frac{34+26}{2\cdot1}=\frac{60}{2}=30

 

x_{2}=\frac{-b-\sqrt{D}}{2a}=\frac{34-26}{2\cdot1}=\frac{8}{2}=4

 

не подходит по смыслу или не удовлетворяет условию, так как 4<10

 

следовательно

х=30 (дней) - выкопает котлован второй экскаватор.

х-10=30-10=20 (дней) - выкопает котлован  первый экскаватор.

II способ:

Предположим, что х - время одиночной работы первого экскаватора, у - время одиночной работы второго экскаватора

таким образом

\frac{1}{x} - производительность первого экскаватора

 

\frac{1}{y} - производительность второго экскаватора

 

согласно этим данным составим систему уравнений и решим её:

 

\left \{{{y=x+10}\atop{\frac{1}{x}+\frac{1}{y}=\frac{1}{12}}}\right

 

\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}

 

12(x+10)+12x=x(x-10)

 

12x+120+12x=x^{2}+10x

 

24x+120=x^{2}+10x

 

x^{2}+10x-24x-120=0

 

x^{2}-14x-120=0

 

Cчитаем дискриминант:

 

D=b^{2}-4ac=(-14)^{2}-4\cdot1\cdot(-120)=196+480=676

 

Дискриминант положительный

 

\sqrt{D}=26

 

Уравнение имеет два различных корня:

 

x_{1}=\frac{-b+\sqrt{D}}{2a}=\frac{14+26}{2\cdot1}=\frac{40}{2}=20

 

x_{2}=\frac{-b-\sqrt{D}}{2a}=\frac{14-26}{2\cdot1}=\frac{-12}{2}=-6

 

не удовлетворяет условию, так как отрицательные дни быть не могут

 

следовательно

х=20 (дней) - выкопает котлован  первый экскаватор.

y=x+10=20+10=30 (дней) - выкопает котлован второй экскаватор.

 

Ответ: первый экскаватор выкопает котлован за 20 дней; второй экскаватор выкопает котлован за 30 дней.

 

(172k баллов)
0 голосов

пусть Х-дней работает один 1-й, тогда (Х+10)дней работает один 2-й.

значит 1/х - это скорость работы в день 1-го, а 1/(х+10) - скорость работы 2-го. вместе они работали 12 дней, следовательно получаем уравнение

12/х +12/(х+10) = 1  привидем  к общему знаменателю х(х+10) и оставим одни числители:

12х+12(х+10)=х(х+10)

12х+12х+120=х^2+10x

x^2-14x-120=0

D=676

x1=-6 - это отрицательное значение , чего быть не может при нашем условии

x2=20 -дней работал 1-й, 20+10=30-дней работаль 2-й.

(128 баллов)