1.Мотоциклист остановился ** 12 мин. После этого, увеличив скорость ** 15 км/ч, он...

0 голосов
134 просмотров

1.Мотоциклист остановился на 12 мин. После этого, увеличив скорость на 15 км/ч, он наверстал время на расстоянии 60 км. С какой скоростью он двигался после остановки? 2. При каких значениях k уравнение: (x^2-kx+1)/(x+3)=0 имеет один корень?


Алгебра (25 баллов) | 134 просмотров
Дан 1 ответ
0 голосов

Пусть скорость мотоциклиста после остановки x км/ч, тогда до остановки он двигался со скоростью (x−15) км/ч. 

За счёт увеличения скорости на расстоянии 60 км он ликвидировал отставание 12 мин = ⅕ часа. составляем уравнение: 
60/(x−15) − 60/x = ⅕; 
300(x−(x−15))/[x(x−15)] = 1; 
x²−15x−4500 = 0; 
x = (15+√(225+18 000))/2 = (15+135)/2 = 75 (км/ч). 

Проверяем: до остановки мотоциклист ехал со скоростью 75−15 = 60 км/ч; 
тогда 60/60 − 60/75 = 1−⅘ = ⅕ (Ok). 

ОТВЕТ: после остановки мотоциклист ехал со скоростью 75 км/ч.

(184 баллов)