1
ОДЗ
x²+4≥0⇒x∈R
(x-3)√(x²+4)-(x-3)(x+3)≤0
(x-3)*(√(x²+4)-(x+3))≤0
1){x-3≤0⇒x≤3
{√(x²+4)-(x+3)≥0⇒√(x²+4)≥x+3
x²+4≥x²+6x+9
6x≤-5
x≤-5/6
x∈(-∞;-5/6]
2)x≥3
x≥-5/6
x∈[3;∞)
Ответ x∈(-∞;-5/6] U [3;∞)
2
ОДЗ x²+1≥0⇒x∈R
(x-1)√(x²+1)-(x-1)(x+1)≤0
(x-1)*(√(x²+4)-(x+1))≤0
1){x-1≤0⇒x≤1
{√(x²+1)-(x+1)≥0⇒√(x²+1)≥x+1
x²+1≥x²+2x+1
2x≤0
x≤0
x∈(-∞;0]
2)x≥1
x≥0
x∈[1;∞)
Ответ x∈(-∞;0] U [1;∞)