А) Скорее всего, на чертеже опечатка, и надо доказать, что ∆AQR=∆BQP.
1. Т.к. по условию АС=ВС, то ∆АВС-равнобедренный с основанием АВ.
Т.к. по условию AQ=BQ, то СQ - медиана.
Отсюда по свойствам равнобедренного треугольника CQ - биссектриса угла С и высота. Следовательно, ∠АCQ=∠ВCQ.
2. Рассмотрим ∆СQR и ∆СQP. У них CQ-общая, ∠RCQ=∠PCQ (по доказанному), ∠CQP=∠CQR (по условию). Значит, ∆СQR = ∆СQP (по стороне и прилежащим углам). Отсюда следует, что RQ=PQ.
3. Т.к. по доказанному CQ⊥AB, то ∠АQС=∠ВQС (смежные и прямые). Тогда ∠ВQP=∠АQR (как результаты вычитания из равных прямых углов соответствующих равных другу другу ∠CQP и ∠CQR).
4. Наконец, рассмотрим ∆АQR и ∆ВQP. У них AQ=QB (по условию), ∠ВQP=∠АQR (по доказанному), QP=QR (по доказанному). Значит, ∆AQR=∆BQP (по двум сторонам и углу между ними).
Доказано.