Обозначим стороны квадрата в основании пирамиды за "а".
Площадь основания So = a².
Апофему А найдём из осевого сечения пирамиды, проведенного перпендикулярно ребру основания.
Апофема как гипотенуза равна половине стороны основания, делённой на косинус угла при основании: A = (a/2)/cos60° = (a/2)/(1/2) = a.
Тогда Sбок = (1/2)РА = (1/2)*(4а)*а = 2а².
Площадь полной поверхности S = So + Sбок = а² + 2а² = 3а².
Отсюда находим заданное соотношение:
Sбок / S = 2а²/3а² = 2/3.
Ответ: Sбок =(2/3)S (вариант Д).
А рисунком пирамиды надо самому вычертить!