(bx)^1/3 +(by)^1/3=∛bx + ∛by=∛b(∛x+∛y)
b - b^1/2=b-√b=√b(√b -1)
3+3^1/3=3+∛3=∛3(∛3²+1)
(5x)^1/2 + (3x)^1/2=√5x+√3x=√x(√5+√3)
a^1/3 b^1/3 -a^1/3-b^1/3+1=a^1/3(b^1/3 - 1) - (b^1/3 -1)=(b^1/3 -1)(a^1/3 -1)=(∛b -1)(∛a -1)
c^1/2 +c^1/4=c^2/4 + c^1/4=c^1/4(c^1/4+1)=⁴√c(⁴√c+1)
5-5^2/3=5^3/3 - 5^2/3=5^2/3(5^1/3 - 1)=∛5²(∛5 - 1)
x+y^1/2 +x^1/2 +x^1/2 y^1/2=x^1/2(x^1/2+1)+y^1/2(1+x^1/2)=(x^1/2+y^1/2)(x^1/2+1)=(√x+√y)(√x+1)