Объём куба равен 24корень 3. Найдите его диагональ.

0 голосов
242 просмотров

Объём куба равен 24корень 3.
Найдите его диагональ.


Алгебра (23 баллов) | 242 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Vкуба=24√3
V=a³
a³=24√3.   a=∛(24√3)
теорема о квадрате диагонали прямоугольного параллелепипеда:
d²=a²+b²+c².  a, b, c - измерения прямоугольного параллелепипеда
куб - прямоугольный параллелепипед ,все ребра которого равны а.
d²=3a²

d^{2} =3*( \sqrt[3]{24 \sqrt{3} } ) ^{2} 

d= \sqrt[3]{24 \sqrt{3} } * \sqrt{3} = \sqrt[3]{24* \sqrt{3}*( \sqrt{3} ) ^{3} } = \sqrt[3]{24* 3^{2} } = \sqrt[3]{8*3* 3^{2} } =6
d=6

(276k баллов)