Найдите площадь четырёхугольника, если его диагонали равны, а длины отрезков, соединяющих...

0 голосов
61 просмотров

Найдите площадь четырёхугольника, если его диагонали равны, а длины отрезков, соединяющих середины противоположных сторон четырёхугольника, равны 12см и 16см.


Геометрия (20 баллов) | 61 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Если в четырехугольнике диагонали равны, то этот четырехугольник – прямоугольник.
Значит, длины отрезков, соединяющих середины противоположных  сторон четырёхугольника и есть длин его сторон.
S=ab=12см*16см=192см^2
Ответ: 192см^2

(271k баллов)
0

если в четырехугольнике диагонали равны, то это не прямоугольник, они же не делятся точкой пересечения пополам

0

У прямоугольника диагонали равны и точкой пересечения делятся пополам

0

а я то и не знала, это ежу понятно, что в прямоугольнике, но тут не прямоугольник, а произвольный четырехугольник, равные диагонали пересеклись как смогли, середины сторон этого четырехугольника образуют ромб со стороной 10 см, а дальше?

0 голосов

Диагонали равны у прямоугольника , а отрезки соединяющие середины противоположных  сторон , параллельны и равны противолежащим сторонам прямоугольника, значит его стороны 12см и16 см. Площадь равна 12 *16=192 квадратных см