1. Пусть есть две ПРОИЗВОЛЬНЫЕ касающиеся окружности радиусов r и R, и к ним проведена общая внешняя касательная. Если провести радиусы в точки касания и линию центров, то получится прямоугольная трапеция с основаниями r и R и боковой стороной r + R;откуда длину касательной d (между точками касания) легко найти
(r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r);
2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9;
причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей.
d = d1 + d2;
2√(R*x) + 2√(r*x) = 2*√(R*r);
x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;