,
m=1/2
\frac{(m^4-1)}{(m^4-1)(m^4+1)}
\frac{1}{m^4+1}
\frac{1}{(1/2)^4+1}
\frac{1}{1/8+1}
=
8/9 " alt=" \frac{m^4-1}{m^8-1} ,
m=1/2
\frac{(m^4-1)}{(m^4-1)(m^4+1)}
\frac{1}{m^4+1}
\frac{1}{(1/2)^4+1}
\frac{1}{1/8+1}
=
8/9 " align="absmiddle" class="latex-formula">
(5x^2+x-4)/(x^2+x)=5[(x-0.8)(x+1)]/x(x+1)=5(x-0.8)/x=5x-4/x=
5-4/x
(t^4-bt^2+16)/(t+2)(t^2-4)=[-bt^2-(t^4-16)]/(t^2-4)(t+2)=
-bt^2/(t+2)(t^2-4)-[(t^2-4)(t^2+4)]/(t^2-4)(t+2)=
-bt^2/(t+2)(t^2-4)-[(t-2)
(t+2)(t^2+4)]/(t^2-4)
(t+2)=
-bt^2/(t+2)(t^2-4)-(t-2)=
=
2-t-bt^2/(t+2)(t^2-4)