A/(x+1) +(bx+c) / (x² -x +1) = 1/(x³ +1) ;
a(x²-x+1) +(bx +c)(x+1) =1 , ясно что x≠ -1.
(a+b)x² +(-a+b+c)x +(c+a) = 0*x² +0*x +1 ; * * * P(x) ≡ R(x) * * *
{ a+b=0 ; -a+b+c =0 ; c+a =1 .⇔{ b= -a ; -a- a +1-a=0 ; c = 1-a .⇔
{ b= -a ;a = 1/3 ; c = 1-a.
ответ : a = 1/3 ; b = - 1/3 ; с = 2/3 .
* * *
1/(x³ +1) = a/(x+1) +(bx+c)/(x² - x +1) метод неопределенных коэффициентов применяется при интегрирования .