1) log₄ 36+log₂10-2log₂√15+4^[(1/2)log₂5]=
=(1/2)·2log₂6+log₂10-2·(1/2)log₂15+2^log₂5=log₂[6·10/15]+5=log₂4+5=2+5=7
2) 6 log cosπ/4+2 log (ctgπ/6)³ =6 log ( 1/√2)+2 log (√3)³=
sinπ/4 tg²π/6 1/√2 (1/√3)²
= 6+2·(-1) log (√3)³=6-2·(3/2)=3
3
3) log²₃ 36-4(log²₃2+2log₃2-3)=(log₃ (3²·2²))²-4(log²₃2)-8log₃2+12=
=(2+2log₃2))²-4(log²₃2)-8log₃2+12=4+8log₃2+4log²₃2-4(log²₃2)-8log₃2+12=16