Две бригады должны были закончить уборку урожая за 12 дней. После 8 дней совместной...

0 голосов
83 просмотров

Две бригады должны были закончить уборку урожая за 12 дней. После 8 дней совместной работы первая бригада получила другое задание поэтому вторая бригада закончила оставшую часть работы за 7 дней. За сколько дней могла бы убрать урожай каждая бригада, работая отдельно?


Алгебра (15 баллов) | 83 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть первый за х дней второй за у дней тогда по условию они оба если бы вместе работали  сделали это бы за 12 дней  
\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\
по второму условию следует что второй работал на 7 часов больше то 
\frac{8}{x}+\frac{7+8}{y}=1\\
\\
 \left \{ {{\frac{1}{x}+\frac{1}{y}=\frac{1}{12}} \atop {\frac{8}{x}+\frac{15}{y}=1}} \right.\\
\\
\frac{2}{3}-\frac{8}{y}+\frac{15}{y}=1\\
\frac{7}{y}=\frac{1}{3}\\
y=21\\
x=28\\
Ответ  за 21 и 28 дней

(224k баллов)